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Overview

o Geometric Singular Perturbation Theory
o Glycolythic Relaxation Oscillations
o Mitotic Oscillator

e Conclusion and Outlook

joint work with llona Kosiuk (MPI Leipzig)



Singularly perturbed systems in standard form

¥ = ef(x,y,¢)
y = g(r,y,¢)
x slow, y fast, ¢ << 1,
fast time scale 7, ' = %

transform to slow time scale t ;= e7

© = f(z,y.¢)
ey = g(z,y,¢)

o global separation into slow and fast variables

e singular behaviour with respect to one parameter



Limiting systems for ¢ =0

layer problem v ¥
o
y = g(x,y,0)
it = f(z,y,0)
reduced problem
’ P 0 = g(z,y,0)

o critical manifold S := {g(z,y,0) =0}
S is a manifold of equilibria for layer problem.

reduced problem is a dynamical system on S.



Geometric Singular Perturbation Theory (GSPT)

critical manifold .S normally hyperbolic, i.e. g—z|s
hyperbolic = S perturbs smoothly to slow
manifold S. for ¢ small, 3 stable- and unstable
manifolds W#(S.), W"(S;) , invariant foliations,....
(Fenichel, 1979)

Refinements: Exchange Lemma, Fenichel Normal
Form,... (C. Jones, N. Kopell, T. Kaper, P.
Brunovsky,...)

Applications: analysis of periodic, heteroclinic,
homoclinic, and chaotic dynamics; existence and
stability of travelling waves,...



Extensions: blow-up method at non-hyperbolic
parts of S

Phenomena:

relaxation oscillations

e canard solutions
e mixed-mode oscillations

o delayed bifurcations

F. Dumortier, R. Roussarie,

M. Krupa, M. Wechselberger, P. Sz.,...



More difficulties

in many applications, e.g. from biology and
chemistry, there is

e no global separation into slow and fast variables
o dynamics on more than two distinct time-scales

e singular or non-uniform dependence on several
parameters

o several scaling regimes with different limiting
problems are needed

Claim: GSPT and in particular the blow-up method
is useful for such problems.



Strategy

o identify fastest time-scale and corresponding
scale of dependent variables, rescale

o often the limiting problem has a (partially)
non-hyperbolic critical manifold

o use (repeated) blow-ups to desingularize
o identify relevant singular cycles, etc.

e carry out perturbation analysis

case studies:

Autocatalator, Glykolythic Oscillations,
Mitotic Oscillator with I. Kosiuk (MPI Leipzig)



Glycolytic Oscillations

o model for glycolythic oscillations
o relaxation oscillations

o two parameter singular perturbation problem:
g,0 <<1

e various scaling regimes
o (£,0) = (0,0) very degenerate
o geometric analysis based on blow-up method



Glycolytic Oscillations Model (GOM)

o glycolysis: complicated
a = pupt—ptola,y) biochemical reaction
4= Mola,y) — 7 glucose — pyruvate
e simplified model
(v +1)3

T L+ a’(y+ 1)

e substrate o, product v

¢(a,7)
e parameters: /i, p, A\, L

o A and L large

[ L. Segel, A. Goldbeter, Scaling in biochemical
kinetics: dissection of a relaxation oscillator
J. Math. Biol. (1994)
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o L large, ) fixed: classical relaxation oscillations



L=5x10° p=25 AX=40, pn=0.15
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o L large, ) fixed: classical relaxation oscillations



L=5x105 p=25 A=40, u=0.15

y
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o L large, X fixed: classical relaxation oscillations

o L, )\ both large: more complicated

/A
o small parameter ¢ := /7



Scaling analysis
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Rescaled Equations
System (GOM) in (a,b) variables with p =1

ad = elp-— —5gi221)2] 1 1
. a?b? 2 = — 5 e —
V' = wham —b0+90 - L VA

multiplication with 6% + a?b” > 0 gives

a = ela®?(pu— 1)+ pd?

;o 272 20 272 2 (1)
V' = a’b*(1 —b)+6°(a’b> — b+ 6°)

o slow-fast system in standard form: «a slow, b fast

o L large = = small for )\ fixed; A large = ¢ small

o Goldbeter-Segel condition: ¢ < § < 1



Slow-fast subsystems for ¢ = 0

o layer problem

v @)
Vo= a**(1—10b)+ 6*(a*b* — b+ %)

o reduced problem

= a’*(u—1) + pd?

a
3
0 = a?b*(1 —b)+ 6%(a®b* — b+ &%) )



Critical manifold

S° ={(a,b) :  a®b*(1—b)+6*(a®?* —b+6%) =0}

osf— —

a

S =S, UBUS,UDUS,, §>0
singular cycle I'): four segments AB, BC, CD, DA



Critical manifold

SO ={(a,b):  a®b*(1—b)+0%(a®h*> —b+6%) =0}

0 0.5 1

!m

SO=SUBUS,UDUS,, §>0

= relaxation oscillations for § > 0 fixed .and ¢ small.



Fold Point: (0,0) nonhyperbolic, blow-up method

/

p— —_— 2 o« o o
Krupa, Sz. (2001) tT yta
Yy = —& 4+ ---
5 AT S ST S A
o AR R
El'n
X Eﬂm

e asymptotics of 5, . N L

o map: 7 : %" — 3% contraction, rate e Cle



Critical manifold S° depends singularly on §

SO ={(a,b):  a®b*(1—b)+0%(a®h* —b+6%) =0}

0.5

§=1/8



Critical manifold S° depends singularly on §

SO ={(a,b):  a®b*(1—b)+0%(a®h* —b+6%) =0}
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Critical manifold S° depends singularly on §

SO ={(a,b):  a®b*(1—b)+0%(a®h* —b+6%) =0}

§ =1/100



5 = 0, Critical manifold S°

a’b*(1 —b) =0, a=0, b=0, b=1

6—0

03

The folded critical manifold S° collapses to the
more singular “manifold” S =1, U, U,



Scaling Regimes




Scaling Regimes:

Regime 1: a = O(1),b = O(5?)




Scaling Regimes:

Regime 1: a = O(1),b = O(5?),

Regime 2: a = O(1),b = 0O(1)
s | ) 4 ! ;
“'-3\2..3




Scaling Regimes:  Regime 3: a = O(4),b = O(1)

Regime 1: a = O(1),b = 0(6?), Regime 2: a = O(1),b= 0O(1)
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Scaling Regimes:  Regime 3: a = O(4),b = O(1)

Regime 1: a = O(1),b = O(6?),

Regime 2: a = O(1),b = 0O(1)
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in Regimes 1 - 3 results for 0 < ¢ < § < 1



Scaling Regimes:  Regime 3: a = O(4),b = O(1)

Regime 1: a = O(1),b = 0(6?), Regime 2: a = O(1),b= 0O(1)
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For ¢ =0, 0 = 0 exists very degenerate singular cycle
singular cycle T') := 0y U Uoz U oy

0

A D', b

S
S

Bu

S
@)

lines a = 0, b = 0 non-hyperbolic

line b = 1 hyperbolic



Main result

Theorem:

For ;1 < 1 there exist 0y > 0 and £y > 0 such that
system (1) has a unique attracting periodic orbit Fg
for 0 < 9 < g and 0 < € < £yd with the properties

© I tends to singular cycle ') as ¢ — 0 for
0 € (07 60]:

@ I tends to singular cycle T} as (8,¢) — (0,0).

Proof: based on repeated blow-ups



Extended system

because of ¢ < d < 1 set ¢ := &0
a = E6[a*b*(pu — 1) + pd?

Vo= a**(1—10b)+ 6*(a*h* — b+ %)
y =0

o three-dimensional vector field X: defined on R?

o ¢ is the singular perturbation parameter causing
the slow-fast structure

o family of 1-dim. critical manifolds S°
corresponds to 2-dim. critical manifold S



Cylindrical blow-up of the non-hyperbolic line [,

Xz

a=ra, b=A>,

(@,d,7,b) € S'xRxR

o chart K3: 6 =1, corresponds to Regime 3

o chart K4: a = 1, covers Regime 3 and Regime 2



Dynamics in Ky slow-fast system, 0 < ¢ < 1

&

ry = €g1(ba, 64,74) 7&
5!1 — ég?(b47647r4) |

by = f(ba,817a) f \

La>

slow variables 74, d4

fast variable b, / F /

e invariant planes: 4, =0 and 6, =0

o critical manifold S partially desingularized

o S cusp-like along non-hyperbolic line [,



Cylindrical blow-up of the non-hyperbolic line [, 4

ry =T, by = p°b, 84 = po, (b,0,p,7) € S'xRxR



Charts K7 and K5

chart Ky: § =1

chart K»: b=1



Chart K| covers Regime 1 and parts of Regime 3

slow-fast for € < 1, critical manifold S desingularized



Chart KQ

covers Regime 1, Regime 2, and parts of Regime 3

slow-fast for € < 1, critical manifold .S desingularized



After two cylindrical blow-ups...




Blown-up singular cycle I




Blown-up critical manifold S and family of singular
cycles I




Proof of main result

e Poincaré map Il : X — X for ¢, € small
o S perturbs to slow manifold S. for £ small
o folds, transition near hyperbolic line




Define sections >, >, >, transversal to ws, ws, w
e maps II; : X — X, Iy : Xp — 20, 1l : X, — X
oH:Z—>E,H::H30H20H1
e attraction to slow manifolds, passage near folds,

transition near hyperbolic line




Folds are treated by available results, which are
proved by other blow-ups

o all maps are analyzed in the appropriate charts:
H1 in K4, H2 in K4, and Kl, H3 in KQ

o II; and Il are very similar: exp. strong
contractions

o II3 desribes passage near a line of hyperbolic
equilibria: at most algebraically expanding



II; maps X to an exponentially thin wedge I1; (%)
exp. close to S. N,

o II; restricted to a leaf § = const. is a
contracting with rate ¢~ /%,

19 (éc/:i £ )

I_;]ﬁn Eb =

§ = consl.

=



IT maps ¥ to an exponentially thin wedge I1(X) exp.
close to S.NX

o II restricted to & = const. contracts, rate ¢ /%,

o = d fixed point of II, main result is proved

O(éC/dE) Oﬁzﬁngs) 54

0= const.

=

w, N ¥,



Summary

o identify fastest time-scale and corresponding
scale of dependent variables, rescale

o often the limiting problem has a (partially)
non-hyperbolic critical manifold

o use (repeated) blow-ups to desingularize
o identify relevant singular cycles, etc.

e carry out perturbation analysis



Mitotic Oscillator

enzyme reaction relevant for cell division cycle

v + —
‘ Cyclin Vo
+ @ Cyclin triggers the transformation of
/NEW’CW inactive (M+) into active (M) cdc2
M7 B M - kinase by enhancing the rate of a
v, phosphatase. A kinase with rate v2
E, + reverts this modification.
/VES\ @ Cdc2 kinase - phosphorylates a
X4 3 X protease shifting it from the inactive
N %~ (X+) to the active (X) form. The
E, cyclin protease is inactivated by a

further phosphatase.

@ A. Goldbeter, A minimal cascade model for the mitotic oscillator involving
cyclin and cdc2 kinase. Proc Natl Acad Sci USA 88 (1991), 9107-9111.



Mitotic Oscillator (MO)

dC C

— = oy — X — k.

4t Vi — v g — RO
dM 1—-M M
dt V1K1+1—M_V2K2+M
dX 1-X X
— = V3 — Vi

Michaelis-Menten kinetics

C' cyclin concentration, M, X fractions of active
kinase and cyclin protease, 1 — X, 1 — M fractions
of inactive cyclin protease and kinase.

K4, K., K;,j=1,...,4 - Michaelis constants



Sustained oscillations

10
o8 Wariables
06 - C
- M
04
- X
02}
on
o 10 an 30 40
dC 1
=~ - Z(1-X-—
dt 4( )
(1) ﬂ B 6C 1-M _§ M
dt  1+42Cc+1-M 2:+M
aX g 1-x 7 X
dt e+1—-X 10e+X

Parameters
ka = 0.25
v; = 0.25
K. = 0.5
VMl == 3
Vo = 15
Kg = 0
Vs = 1
Vo = 07
e = 1073

@ T. Erneux and A. Goldbeter, Rescue of the quasi-steady-state approximation in a model for oscillations in

an enzymatic cascade SIAM J. Appl. Math 67 (2006), 305-320.



Limit cycle

Periodic orbit in the
cube [0,1]* Cc R?

partially close to X =0,
M=1 X=1 M=0

Theorem: For ¢ small
there exists a strongly
attracting periodic orbit
I'. of system (1) which
tends to a singular cycle
['yase — 0.




Geometric Singular Perturbation Approach

(MO) as a singularly perturbed system of ODEs

X' =[M1-X)(e+X) - $X(e+1-X)|F.(M)

M =[50 - M)(e+ M) —3M(e+1— M)|F.(X)
C' =411 =X - O)F.(M)F.(X)

obtained by multiplying (4) by the factor
F.(M)F.(X)) = (e+1=M)(e+M)(e+1-X)(e+X)

€ - singular perturbation parameter

non-standard form of slow-fast systems on fast
time-scale



Layer problem

X’z(M—%)MMX)

, 6C 3
W = (e 5) LX)

C' = 0.25(1— X — C)Fy(M, X)

Fo(M,X) = (1—M)M(1—-X)X

In the layer problem all three variables evolve!

Critical manifold S consists of four planes
M=0 M=1, X=0, X=1

3 single eauilibrium point



Stability properties of the critical manifold S

Lemma. The layer problem has the following properties:

X =0 is attracting for M < and repelling for M >
M =1 is attracting for C' > and repelling for C' <
X =1 is attracting for M > and repelling for M <
M = 0 is attracting for C' < and repelling for C' >
Equilibrium (X, M, C) = (0.5,0.7,0.5) is of saddle-focus type

in the planes M =0 and M =1

in the planes X =0 and X =1

and
with C' € [0, 1]

Away from and
S perturbs to S,




Slow dynamics

repelling attracting

[
ol 05
(& C
M =0 N X=0 "
o 0z 04 M 06

repelling

08 10

attracting

02 02
repelling repelling
0 00
00 02 04 06 08 10 00 02 04 [T 0z 10
X M

relevant parts of the slow flow contract C



Periodic orbit

3 singular limit
cycle I’y

Slow motion:

in the attracting parts of
the planes M =0,
X=0M=1X=1

Exchange of stability
at the edges

Fast jumps:

from X =0to M =1
fromX =1to M =0

More details needed close to the edges!




Slow drift along the edge (0,0,
Extended system

X' = (X, M,C,¢)
M = f(X,M,C,e) Ny
C/ = f3(X,M,O,€)

g =0

Edge (0,0.C".0) - very
degenerate!

Very slow drift along the 0 .
edges (X, M) = (0.0) and

(XM = (1.1) - studied

the blow-up method!



New phenomenon

M=0

X
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New phenomenon: "delayed” exchange of stability

M = X =0
----- T T — T T — T — 10
repelling repelling
k{/ﬂ___.———-—
P
i T e 7
s o e
C
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b
attracting attracting
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Very slow drift along the edge (X', /) = (0.0)



Blow-up of the non-hyperbolic edge

n Q<
[l
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Charts

For C' fixed each point (0,0, C) is blown-up to a

sphere

(X,M,¢) € $?

Charts

Kli e=1
(rescaling chart)

KQZ M
Kgi le

1



Blow-up of the non-hyperbolic edge
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Dynamics in chart K,

Slow-fast system with respect to ¢

X' = —0.7X(1+ M)+ O(e)
M = { (14 M) = 3M)(1+ X) +
C'" = 025(1-C)1+ M)(1+ X)e +

slow variable C', fast variables M, X

0(e)
+0()

ol f’ﬁ

Critical manifold |4

curve of equilibria c "/

_ . _4cC “
X = O7M - 20-1 |

C € [0,0.5), attracting




Dynamics of the blown-up system

e=0,0<C <0.5 - fixed

For fixed C' < 0.5
equilibrium
X=0M= _2é€1
is a stable node!

From the analysis
in chart Ks:

for C' =0.5
two equilibria collide!



Dynamics of the blown-up system

C=05

C

w  Exit point at ' = 0.5

D,

still degenerate, second
blow-up needed!



Proof

@ singular cycle I'j:

- slow motion in M =0

- very slow drift along

- slow motion in X =0

- fast jump at
from X =0to M =1

@ Poincaré map close to
the singular cycle:
strongly contracting




Conclusion and Outlook

e case study 1: two-parameter singular
perturbation problem, several scaling regimes

e case study 2: singular perturbation problem not
in standard form

o singular behavior of critical manifold S is
resolved by blow-up constructions

o use standard regular and singular perturbation
results

e approach useful in other multi-parameter
singular perturbation problems
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